Error and stability estimates for surface-divergence free RBF interpolants on the sphere
نویسندگان
چکیده
Recently, a new class of surface-divergence free radial basis function interpolants has been developed for surfaces in R3. In this paper, several approximation results for this class of interpolants will be derived in the case of the sphere, S2. In particular, Sobolev-type error estimates are obtained, as well as optimal stability estimates for the associated interpolation matrices. In addition, a Bernstein estimate and an inverse theorem are also derived. Numerical validation of the theoretical results is also given.
منابع مشابه
Sobolev-type approximation rates for divergence-free and curl-free RBF interpolants
Recently, error estimates have been made available for divergencefree radial basis function (RBF) interpolants. However, these results are only valid for functions within the associated reproducing kernel Hilbert space (RKHS) of the matrix-valued RBF. Functions within the associated RKHS, also known as the “native space” of the RBF, can be characterized as vector fields having a specific smooth...
متن کاملMatrix-valued radial basis functions: stability estimates and applications
Radial basis functions (RBFs) have found important applications in areas such as signal processing, medical imaging, and neural networks since the early 1980’s. Several applications require that certain physical properties are satisfied by the interpolant, for example being divergence free in case of incompressible data. In this paper we consider a class of customized (e.g. divergence-free) RBF...
متن کاملMesh-free Semi-Lagrangian Methods for Transport on a Sphere Using Radial Basis Functions
We present three new semi-Lagrangian methods based on radial basis function (RBF) interpolation for numerically simulating transport on a sphere. The methods are mesh-free and are formulated entirely in Cartesian coordinates, thus avoiding any irregular clustering of nodes at artificial boundaries on the sphere and naturally bypassing any apparent artificial singularities associated with surfac...
متن کاملError estimates for matrix-valued radial basis function interpolation
We introduce a class of matrix-valued radial basis functions (RBFs) of compact support that can be customized, e.g. chosen to be divergence-free. We then derive and discuss error estimates for interpolants and derivatives based on these matrixvalued RBFs.
متن کاملUnsteady Free Convection from a Sphere in a Porous Medium with Variable Surface Temperature
In this paper a transient free convection flow around a sphere with variable surface temperature and embedded in a porous medium has been considered. The temperature of the sphere is suddenly raised and subsequently maintained at values that varies with position on surface. The method of asymptotic expansions is applied for small Rayleigh numbers and then a finite-difference scheme is used to s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Math. Comput.
دوره 78 شماره
صفحات -
تاریخ انتشار 2009